Localization spectrum of a bath-coupled generalized Aubry-André model in the presence of interactions

Yi-Ting Tu (凃懿庭)

Based on Phys. Rev. B **108**, 064313 (2023) by <u>Yi-Ting Tu</u>, DinhDuy Vu, and Sankar Das Sarma

Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics, University of Maryland

APS March Meeting 2024

BACKGROUND

Extended (Volume law EE)

Localized (Area law EE) Parameter

Parameter

Interacting Ganeshan-Pixley-Das Sarma (GPD) model

$$H = \sum_{j=1}^{L-1} \left(S_j^x S_{j+1}^x + S_j^y S_{j+1}^y + V S_j^z S_{j+1}^z \right) + W \sum_{j=1}^{L} h_j S_j^z$$
$$h_j = \frac{\cos(2\pi\varphi j + \phi)}{1 - \alpha \cos(2\pi\varphi j + \phi)} \quad \varphi = \frac{1 + \sqrt{5}}{2}$$

Interacting Ganeshan-Pixley-Das Sarma (GPD) model

$$H = \sum_{j=1}^{L-1} \left(S_j^x S_{j+1}^x + S_j^y S_{j+1}^y + V S_j^z S_{j+1}^z \right) + W \sum_{j=1}^L h_j S_j^z$$
$$h_j = \frac{\cos(2\pi\varphi j + \phi)}{1 - \alpha\cos(2\pi\varphi j + \phi)} \quad \varphi = \frac{1 + \sqrt{5}}{2}$$
$$\alpha = 0$$
Aubry-André (AA) model
$$h_j = 0$$

Interacting Ganeshan-Pixley-Das Sarma (GPD) model

$$H = \sum_{j=1}^{L-1} \left(S_j^x S_{j+1}^x + S_j^y S_{j+1}^y + V S_j^z S_{j+1}^z \right) + W \sum_{j=1}^{L} h_j S_j^z$$
$$h_j = \frac{\cos(2\pi\varphi j + \phi)}{1 - \alpha\cos(2\pi\varphi j + \phi)} \quad \varphi = \frac{1 + \sqrt{5}}{2}$$

2/10

Li, Ganeshan, Pixley, Das Sarma, PRL (2015)

Depends on the finite size behaviors of **two very different quantities**.

Li, Ganeshan, Pixley, Das Sarma, PRL (2015)

Depends on the finite size behaviors of **two very different quantities**.

Hsu, Li, Deng, Das Sarma, PRL (2018)

Uses a very large feature space which is difficult to interpret.

Li, Ganeshan, Pixley, Das Sarma, PRL (2015)

Depends on the finite size behaviors of **two very different quantities**.

Hsu, Li, Deng, Das Sarma, PRL (2018)

Uses a very large feature space which is difficult to interpret.

Can we use a single quantity to generate a 2D feature space? (function of time)

OUR SETUP

System

$$H_{\text{system}} = \sum_{j=1}^{L_s - 1} \left(S_j^x S_{j+1}^x + S_j^y S_{j+1}^y + V S_j^z S_{j+1}^z \right) + W \sum_{j=1}^{L_s} h_j S_j^z$$
$$h_j = \frac{\cos(2\pi\varphi j + \phi)}{1 - \alpha\cos(2\pi\varphi j + \phi)} + \text{const.}$$

System

$$H_{\text{system}} = \sum_{j=1}^{L_s - 1} \left(S_j^x S_{j+1}^x + S_j^y S_{j+1}^y + V S_j^z S_{j+1}^z \right) + W \sum_{j=1}^{L_s} h_j S_j^z$$
$$h_j = \frac{\cos(2\pi\varphi j + \phi)}{1 - \alpha\cos(2\pi\varphi j + \phi)} + \text{const.}$$

 $H_{\text{bath}} = \sum_{j=1-L_b}^{-1} \left(S_j^x S_{j+1}^x + S_j^y S_{j+1}^y + S_j^z S_{j+1}^z \right)$

Size (=12)

$$H_{\text{system}} = \sum_{j=1}^{L_s - 1} \left(S_j^x S_{j+1}^x + S_j^y S_{j+1}^y + V S_j^z S_{j+1}^z \right) + W \sum_{j=1}^{L_s} h_j S_j^z$$

$$h_j = \frac{\cos(2\pi\varphi j + \phi)}{1 - \alpha\cos(2\pi\varphi j + \phi)} + \text{const.}$$

$$H_{\text{bath}} = \sum_{j=1-L_b}^{-1} \left(S_j^x S_{j+1}^x + S_j^y S_{j+1}^y + S_j^z S_{j+1}^z \right)$$

Size (=12)

Size (=12)

$$H_{\text{system}} = \sum_{j=1}^{L_s-1} \left(S_j^x S_{j+1}^x + S_j^y S_{j+1}^y + V S_j^z S_{j+1}^z \right) + W \sum_{j=1}^{L_s} h_j S_j^z$$

$$h_j = \frac{\cos(2\pi\varphi j + \phi)}{1 - \alpha\cos(2\pi\varphi j + \phi)} + \text{const.}$$

$$H_{\text{bath}} = \sum_{j=1-L_b}^{-1} \left(S_j^x S_{j+1}^x + S_j^y S_{j+1}^y + S_j^z S_{j+1}^z \right)$$

Size (=12)

Size (=12)

$$H_{\text{system}} = \sum_{j=1}^{L_s - 1} \left(S_j^x S_{j+1}^x + S_j^y S_{j+1}^y + V S_j^z S_{j+1}^z \right) + W \sum_{j=1}^{L_s} h_j S_j^z$$

$$h_j = \frac{\cos(2\pi\varphi j + \phi)}{1 - \alpha\cos(2\pi\varphi j + \phi)} + \text{const.}$$
Initial phase (averaged over 14 random choices)

$$M_{\text{bath}} = \sum_{j=1-L_b}^{-1} \left(S_j^x S_{j+1}^x + S_j^y S_{j+1}^y + S_j^z S_{j+1}^z \right)$$
Size (=12)

 $H_{\text{bath}} =$

Dynamics

Dynamics

Dynamics

Growth of entanglement entropy

Entanglement entropy between system and bath

$$\tilde{S}(t) = \frac{S_{\max} - S(t)}{S_{\max}}$$

Growth of entanglement entropy

Entanglement entropy between system and bath

Growth of entanglement entropy

Entanglement entropy between system and bath $\tilde{S}(t) = \frac{S_{\max} - S(t)}{S_{\max}} \approx c \left(\frac{t}{t_0}\right)^{-\gamma} \text{ from } t_0 = 500 \text{ to } t_1 = 1000$

THREE-PHASE CLASSIFICATION

Results – three-phase classification

Results – three-phase classification

LOCALIZATION LENGTH IN INTERMEDIATE AND STRONG DISORDER REGIMES

Extraction of localization lengths

Extraction of localization lengths

Results – Energy-resolved localization lengths

Results – Energy-resolved localization lengths

Conclusion

- We couple a bath to a quasiperiodic spin chain
- From the growth of entanglement entropy, we can distinguish the ETH, non-ergodic extended, and localized regimes
- We can extract the localization length in the localized regime, showing that interaction can strengthen localization in the GPD model.